Automatic Representation for Life-Time Value Recommender Systems Automatic Representation for Life-Time Value Recommender Systems
نویسندگان
چکیده
Recommender systems are embedded in almost every commercial site, proposing users items which are likely to draw their interest. While most systems maximize the immediate gain, a better notion of success would be the lifetime value (LTV) of the user-system interaction. The LTV approach instead considers the future implications of the item recommendations, and seeks to maximize over the cumulative gain over time. Reinforcement Learning (RL) framework is the standard formulation for optimizing the cumulative successes over time, but RL is rarely used in practice due to its complicated representation, optimization and validation techniques. In this paper we propose a new architecture for combining RL with recommendation systems which obviates the need for hand-tuned features, thus automating the state-space representation construction process. We analyze the practical difficulties in this formulation and test our solutions on real-world recommendation data.
منابع مشابه
A Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis
Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...
متن کاملImproving Accuracy of Recommender Systems using Social Network Information and Longitudinal Data
The rapid development of technology, the Internet, and the development of electronic commerce have led to the emergence of recommender systems. These systems will assist the users in finding and selecting their desired items. The accuracy of the advice in recommender systems is one of the main challenges of these systems. Regarding the fuzzy systems capabilities in determining the borders of us...
متن کاملContext-Aware Recommender Systems: A Review of the Structure Research
Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...
متن کاملAutomatic Representation for Lifetime Value Recommender Systems
Many modern commercial sites employ recommender systems to propose relevant content to users. While most systems are focused on maximizing the immediate gain (clicks, purchases or ratings), a better notion of success would be the lifetime value (LTV) of the user-system interaction. The LTV approach considers the future implications of the item recommendation, and seeks to maximize the cumulativ...
متن کاملEffect of Rating Time for Cold Start Problem in Collaborative Filtering
Cold start is one of the main challenges in recommender systems. Solving sparsechallenge of cold start users is hard. More cold start users and items are new. Sine many general methods for recommender systems has over fittingon cold start users and items, so recommendation to new users and items is important and hard duty. In this work to overcome sparse problem, we present a new method for rec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016